asked 90.8k views
0 votes
What is the perimeter of the trapezoid with vertices Q(8, 8), R(14, 16), S(20, 16), and T(22, 8)? Round to the nearest hundredth, if necessary.

asked
User ZPrima
by
7.2k points

2 Answers

2 votes
check the picture below.

so... you can pretty much see how long RS and QT are, you can just count the units off the grid.

now, let's find QR's length


\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &Q&(~ 8 &,& 8~) % (c,d) &R&(~ 14 &,& 16~) \end{array}~~ % distance value d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ QR=√((14-8)^2+(16-8)^2)\implies QR=√(6^2+8^2) \\\\\\ QR=√(36+64)\implies QR=√(100)\implies QR=10

and let's also find the length for ST


\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &S&(~ 20 &,& 16~) % (c,d) &T&(~ 22 &,& 8~) \end{array}~ d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ ST=√((22-20)^2+(8-16)^2)\implies ST=√(2^2+(-8)^2) \\\\\\ ST=√(4+64)\implies ST=√(68)\implies ST=√(4\cdot 17) \\\\\\ ST=√(2^2\cdot 17)\implies ST=2√(17)

so, add the lengths of all sides, and that's the perimeter of the trapezoid.
What is the perimeter of the trapezoid with vertices Q(8, 8), R(14, 16), S(20, 16), and-example-1
answered
User Adriien M
by
8.1k points
2 votes

Answer:

The Perimeter is 38.25 units.

Explanation:

The vertices of trapezoid are Q(8, 8), R(14, 16), S(20, 16), and T(22, 8). we have to find the perimeter of trapezoid.

Perimeter is sum of all sides of trapezoid i.e

Perimeter=QR+RS+ST+TQ

By distance formula,


QR=√((16-8)^2+(14-8)^2)=√(64+36)=√(100)=10 units\\\\RS=√((20-14)^2+(16-16)^2)=√(6^2)=6units\\\\ST=√((22-20)^2+(8-16)^2)=√(4+64)=√(68)=8.25units\\\\TQ=√((8-22)^2+(8-8)^2)=√(14^2)=14units

Perimeter=QR+RS+ST+TQ

=10+6+8.25+14=38.25 units.

answered
User Furkan Kambay
by
8.1k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.