asked 151k views
3 votes
Which type of absolute value inequality requires the use of a compound inequality to reach the solution?

1 Answer

2 votes
Let's approach this problem by considering simple cases. We will consider two kinds of absolute value inequalities, depending on whether the absolute value is less than or greater than a constant.


|x| \geq 2

Let's consider this first case where the absolute value of x should be greater than or equal to 2. Intuition would tell us that if x is positive, it should be greater than or equal to 2 while if x is negative it should be less than or equal to -2. These two solutions cannot be combined together. This will be true for every expression with a greater than symbol favoring the absolute value. Answers for this case will just be written as


x \geq 2 or
x \leq -2

Now let's consider the following case:


|x| \leq 2

For this expression, our x needs to be less than or equal to 2 if it's positive and greater than or equal to -2 if it's negative. We'll notice that these two conditions actually intersect! It is possible to combine the answer into a compound inequality. A compound inequality is an expression where two statements are joined by AND instead of OR (like what happened in the previous case). For this case we'll have the following answer:


-2 \leq |x| \leq 2

ANSWER: Inequalities where 'greater than' symbols favor the CONSTANT will make use of compound inequalities.
answered
User Sarfaraz
by
9.0k points

No related questions found