asked 173k views
4 votes
Could someone please help with these three problems? They are simplifying expressions by factoring. Thank you so much!

Could someone please help with these three problems? They are simplifying expressions-example-1

1 Answer

4 votes
6)


\bf \cfrac{2x^2-13x+15}{x^2-2x}\cdot \cfrac{x^2-4x+4}{10-7x+x^2}\implies \cfrac{(2x-3)(x-5)}{x\underline{(x-2)}}\cdot \cfrac{(x-2)\underline{(x-2)}}{x^2-7x+10} \\\\\\ \cfrac{(2x-3)\underline{(x-5)}}{x}\cdot \cfrac{\underline{(x-2)}}{\underline{(x-2)}~\underline{(x-5)}}\implies \cfrac{(2x-3)}{x}\cdot \cfrac{1}{1}\implies \cfrac{2x-3}{x}

7)


\bf \textit{difference of squares} \\\\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ -------------------------------


\bf \cfrac{4x^2-9y^2}{6x^2-9xy}\cdot \cfrac{6y^2}{4xy+6y^2}\implies \cfrac{2^2x^2-3^2y^2}{3x(2x-3y)}\cdot \cfrac{6y^2}{2y(2x+3y)} \\\\\\ \cfrac{(2x)^2~-~(3y)^2}{\underline{3} x(2x-3y)}\cdot \cfrac{\underline{2}\cdot \underline{3} y\underline{y}}{\underline{2y}(2x+3y)}\implies \cfrac{\underline{(2x-3y)}~\underline{(2x+3y)}}{x\underline{(2x-3y)}}\cdot \cfrac{y}{\underline{2x+3y}} \\\\\\ \cfrac{1}{x}\cdot \cfrac{y}{1}\implies \cfrac{y}{x}

11)


\bf \cfrac{2x-3}{5x+1}/\cfrac{6x^2-13x+6}{15x^2-7x-2}\implies \cfrac{2x-3}{5x+1}/\cfrac{(2x-3)\underline{(3x-2)}}{\underline{(3x-2)}~(5x+1)} \\\\\\ \cfrac{2x-3}{5x+1}/\cfrac{2x-3}{5x+1}\implies \cfrac{\underline{2x-3}}{\underline{5x+1}}\cdot\cfrac{\underline{5x+1}}{\underline{2x-3}}\implies \cfrac{1}{1}\cdot \cfrac{1}{1}\implies 1
answered
User Jennifer S
by
8.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.