asked 202k views
13 votes
How can the logarithmic expression be rewritten?

Select True or False for each statement.
(I'm really struggling please help)

How can the logarithmic expression be rewritten? Select True or False for each statement-example-1

1 Answer

5 votes


\begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array} ~\hspace{4em} \begin{array}{llll} \textit{Logarithm of rationals} \\\\ \log_a\left( (x)/(y)\right)\implies \log_a(x)-\log_a(y) \end{array} \\\\\\ \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}
\log_3(v)-4\log_3(w)\implies \log_3(v)-\log_3(w^4)\implies \log_3\left( \cfrac{v}{w^4} \right) \\\\[-0.35em] ~\dotfill\\\\ \log_4(n√(m))\implies \log_4(n)+\log_4(√(m)) \\\\\\ \log_4(n)+\log_4\left( m^{(1)/(2)} \right) \implies \log_4(n)+\cfrac{1}{2}\log_4(m)~~\textit{\large \checkmark} \\\\[-0.35em] ~\dotfill\\\\ \log_2\left( \cfrac{cd^3}{e^4} \right)\implies \underline{\log_2(cd^3)}-\log_2(e^4) \\\\\\ \underline{\log_2(c)+\log_2(d^3)}-\log_2(e^4) \implies \log_2(c)+3\log_2(d)-4\log_2(e)

answered
User Kotlet Schabowy
by
7.8k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.