Answer:
Option (1) is correct.
On simplifying
we get,
![7ac\sqrt[4]{ab^2}](https://img.qammunity.org/2019/formulas/mathematics/college/xj6d1phyboaus6x1yl3djnq7vnhjhr6f9c.png)
Explanation:
Consider the given expression,
![14\sqrt[4]{a^5b^2c^4} -7ac\sqrt[4]{ab^2}](https://img.qammunity.org/2019/formulas/mathematics/college/z2n2wqnelcao1m2qof2gfon1axt6yuxeiu.png)
We have write the above expression in simplified form.
Consider the first term,
can be written as ,
![14\sqrt[4]{a^5b^2c^4}=14\sqrt[4]{a^4ab^2c^4}](https://img.qammunity.org/2019/formulas/mathematics/college/3owy0s82f95118vu05hrg6dirvyaok2waa.png)
Taking a and c out the fourth root, we get,
![14\sqrt[4]{a^4ab^2c^4}=14ac\sqrt[4]{ab^2}](https://img.qammunity.org/2019/formulas/mathematics/college/fn1mwivk9nzz2qrt53suhsoganw783zl2h.png)
Now the expression becomes,
![14ac\sqrt[4]{ab^2} -7ac\sqrt[4]{ab^2}](https://img.qammunity.org/2019/formulas/mathematics/college/61l7itd41s4gdkcy9s03d3anqj3pitniyd.png)
Now we can simplify this, taking
common from both the term, we get,
![7ac\sqrt[4]{ab^2}(2-1)](https://img.qammunity.org/2019/formulas/mathematics/college/1mibxlfiqthr1g6zolno6uidu9dpc54y4y.png)
On solving we get,
![\rightarrow 7ac\sqrt[4]{ab^2}](https://img.qammunity.org/2019/formulas/mathematics/college/uua1d3ja3u3om7xhq5g8w2n6y8ekhxrn4p.png)
Option (1) is correct.
Thus, on simplifying
we get,
![7ac\sqrt[4]{ab^2}](https://img.qammunity.org/2019/formulas/mathematics/college/xj6d1phyboaus6x1yl3djnq7vnhjhr6f9c.png)