asked 191k views
5 votes
Use the chain rule to differentiate the following function.

f(x)=(5x+sin^3(x)+sinx^3)^3

1 Answer

4 votes

Answer:


\displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \bigg[ 3x^2cosx^3 + 3sin^2(x)cos(x) + 5 \bigg]

General Formulas and Concepts:

Algebra I

  • Functions
  • Function Notation

Pre-Calculus

  • Trigonometric Notation

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Trig Derivative:
\displaystyle (d)/(dx)[sin(u)] = u'cos(u)

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = (5x + sin^3x + sinx^3)^3

Step 2: Differentiate

  1. Chain Rule:
    \displaystyle f'(x) = (d)/(dx) \bigg[ (5x + sin^3x + sinx^3)^3 \bigg] \cdot (d)/(dx) \bigg[ 5x + sin^3x + sinx^3 \bigg]
  2. Basic Power Rule:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^(3 - 1) \cdot (d)/(dx) \bigg[ 5x + sin^3x + sinx^3 \bigg]
  3. Simplify:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot (d)/(dx) \bigg[ 5x + sin^3x + sinx^3 \bigg]
  4. Derivative Property [Addition]:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ (d)/(dx)[5x] + (d)/(dx)[sin^3x] + (d)/(dx)[sinx^3] \bigg]
  5. Rewrite [Trigonometric Notation]:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ (d)/(dx)[5x] + (d)/(dx)[(sinx)^3] + (d)/(dx)[sinx^3] \bigg]
  6. Basic Power Rule:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5x^(1 - 1) + (d)/(dx)[(sinx)^3] + (d)/(dx)[sinx^3] \bigg]
  7. Simplify:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + (d)/(dx)[(sinx)^3] + (d)/(dx)[sinx^3] \bigg]
  8. Trig Derivative [Derivative Rule - Chain Rule]:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + (d)/(dx)[(sinx)^3] + \bigg( (d)/(dx)[sinx^3] \cdot (d)/(dx)[x^3] \bigg) \bigg]
  9. Trig Derivative [Basic Power Rule]:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + (d)/(dx)[(sinx)^3] + \bigg( cosx^3 \cdot 3x^(3 - 1) \bigg) \bigg]
  10. Simplify:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + (d)/(dx)[(sinx)^3] + 3x^2cosx^3 \bigg]
  11. Chain Rule:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( (d)/(dx)[(sinx)^3] \cdot (d)/(dx)[sinx] \bigg) + 3x^2cosx^3 \bigg]
  12. Basic Power Rule:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( 3(sinx)^(3 - 1) \cdot (d)/(dx)[sinx] \bigg) + 3x^2cosx^3 \bigg]
  13. Simplify:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( 3(sinx)^2 \cdot (d)/(dx)[sinx] \bigg) + 3x^2cosx^3 \bigg]
  14. Trig Derivative:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + \bigg( 3(sinx)^2 \cdot cos(x) \bigg) + 3x^2cosx^3 \bigg]
  15. Simplify [Rewrite]:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \cdot \bigg[ 5 + 3sin^2(x)cos(x) + 3x^2cosx^3 \bigg]
  16. Rewrite:
    \displaystyle f'(x) = 3(5x + sin^3x + sinx^3)^2 \bigg[ 3x^2cosx^3 + 3sin^2(x)cos(x) + 5 \bigg]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

answered
User Chie
by
8.7k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.