asked 80.6k views
0 votes
For f(x)=√(2x+1) , find the following:

a. The domain of f(x)

b. f(10)

c. f(x+2a)

Explain

asked
User Akshat
by
8.3k points

1 Answer

4 votes

Part a.

The domain is the set of x values such that
x \ge -(1)/(2), basically x can be equal to -1/2 or it can be larger than -1/2. To get this answer, you solve
2x+1 \ge 0 for x (subtract 1 from both sides; then divide both sides by 2). I set 2x+1 larger or equal to 0 because we want to avoid the stuff under the square root to be negative.

If you want the domain in interval notation, then it would be
\Big[ -(1)/(2) , \infty \Big) which means the interval starts at -1/2 (including -1/2) and then it stops at infinity. So technically it never stops and goes on forever to the right.

-----------------------

Part b.

I'm going to use "sqrt" as shorthand for "square root"

f(x) = sqrt(2x+1)

f(10) = sqrt(2*10+1) ... every x replaced by 10

f(10) = sqrt(20+1)

f(10) = sqrt(21)

f(10) = 4.58257569 which is approximate

-----------------------

Part c.

f(x) = sqrt(2x+1)

f(x) = sqrt(2(x)+1)

f(x+2a) = sqrt(2(x+2a)+1) ... every x replaced by (x+2a)

f(x+2a) = sqrt(2x+4a+1) .... distribute

we can't simplify any further

answered
User Truemedia
by
8.8k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.