asked 145k views
1 vote
How many terms are in the sequence: 1100, 1135, 1170,.......,3725?

1 Answer

7 votes

well, the sequence goes, 1100, to 1135, to 1170.... notice, is simply adding 35 to get the next term, so the common difference is 35, and the first term is 1100 of course.



\bf n^(th)\textit{ term of an arithmetic sequence} \\\\ a_n=a_1+(n-1)d\qquad \begin{cases} n=n^(th)\ term\\ a_1=\textit{first term's value}\\ d=\textit{common difference}\\[-0.5em] \hrulefill\\ a_1=1100\\ d=35\\ a_n=3725 \end{cases} \\\\\\ 3725=1100+(n-1)35\implies 3725=1100+35n-35 \\\\\\ 3725=1065+35n\implies 2660=35n\implies \cfrac{2660}{35}=n\implies 76=n

answered
User Dibo
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.