asked 144k views
1 vote
Use the definition of scalar product, a overscript right-arrow endscripts times b overscript right-arrow endscripts = ab cos θ, and the fact that a overscript right-arrow endscripts times b overscript right-arrow endscripts = axbx + ayby + azbz to calculate the angle between the two vectors given by a overscript right-arrow endscripts equals 3.0 i overscript ̂ endscripts plus 3.0 j overscript ̂ endscripts plus 3.0 k overscript ̂ endscripts and b overscript right-arrow endscripts equals 5.0 i overscript ̂ endscripts plus 7.0 j overscript ̂ endscripts plus 6.0 k overscript ̂ endscripts.

1 Answer

1 vote

Answer:
\theta=cos^(-1)0.991=7.69^o

The following vectors have been given:
\vec{a}=3.0\widehat{i}+3.0\widehat{j}+3.0\widehat{k}\\ \vec{b}=5.0\widehat{i}+7.0\widehat{j}+6.0\widehat{k}

The angle between these two vectors can be found by:


cos\theta=\frac{\vec{a}.\vec{b}}{||\vec{a}|| ||\vec{b}||}\\ ||\vec{a}=√(a_x^2+a_y^2+a_z^2)


\vec{a}.\vec{b}=a_xb_x+a_yb_y+a_zb_z\\ \vec{a}.\vec{b}=3*5+3*7+3*6=15+21+18=54


||\vec{a}||=√(3^2+3^2+3^2)=√(27)\\ ||\vec{b}||=√(5^2+7^2+6^2)=√(110)


cos\theta=(54)/(√(27)*√(110))\\=0.991\\ \Rightarrow \theta=cos^(-1)0.991=7.69^o

answered
User Seop Yoon
by
7.8k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.