asked 24.5k views
5 votes
Which expression can you use to find the number of ways to choose 5 cards from a 52-card deck?

a) (52-5)! / 52!5!
b) 52! / (52-5)!
c) 52! / (52-5)!5!

HELP PLEASE!!

2 Answers

7 votes

Answer:

the correct answer is c)

Explanation:

answered
User Joe Beda
by
8.7k points
6 votes
With card games like poker, the order of the cards does not matter. Getting a 5 card draw of 1,2,7,9,K is the same as K,7,9,1,2. What matters is the basic overall group.

Because order doesn't matter, we use a combination (instead of a permutation)

We'll use the nCr combination formula which is
n C r = (n!)/(r!*(n-r)!)
and plug in n = 52 and r = 5

So we get:
n C r = (n!)/(r!*(n-r)!)
52 C 5 = (52!)/(5!*(52-5)!)
52 C 5 = (52!)/((52-5)!*5!)

Answer is choice C
answered
User Thvanarkel
by
8.3k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.