The answer is: " x = 105.41 " . 
_____________________________________________
Step-by-step explanation:
_____________________________________________
Given: " 24 log (3x) = 60 " ; Solve for "x" .
The default is to assume "base 10" for the "logarithm". 
_____________________________________________
Start by dividing each side of the equation by "24" ; 
 → [ 24 log(3x) ] / 24 = 60 / 24 ; 
to get: 
_____________________________________________
 log (3x) = 2.5 ;
_____________________________________________
Rewrite as: log₁₀ (3x) = 2.5 ; 
_____________________________________________
Using the property of logarithms:
⇔ 10⁽²·⁵⁾ = 3x ; 
↔ 3x = 10⁽²·⁵⁾ ; 
 → 10^ (2.5) = 316.2277660168379332 ; 
 → 3x = 316.227766016837933 ; 
Divide each side of the equation by "3" ; 
 to isolate "x" on one side of the equation; 
 and to solve for "x" ; 
 → 3x / 3 = 316.2277660168379332 / 3 ; 
to get: 
 → x = 105.4092553389459777333 ; 
 → round to 2 (two) decimal places; 
_____________________________________________
 → " x = 105.41 " .
_____________________________________________
 Hope this helps!
 Best wishes to you!
_____________________________________________