asked 196k views
2 votes
HELP WITH CALCULUS

Find the area bounded by the curve y = x^2 and the straight line y = 2 + x.
A. 4 1/2
B. 4 1/6
C. 5 1/2
D. 5 1/6

1 Answer

3 votes

Answer:

A. 4 1/2

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Functions

  • Function Notation
  • Graphing

Solving systems of equations by graphing

Calculus

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C
  • Area under the curve

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

y = x²

y = 2 + x

Step 2: Identify

See Attachment. Find other necessary information.

Interval [-1, 2]

Step 3: Find Area

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle A = \int\limits^2_(-1) {(2 + x - x^2)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle A = \int\limits^2_(-1) {2} \, dx + \int\limits^2_(-1) {x} \, dx - \int\limits^2_(-1) x^2} \, dx
  3. [1st Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle A = 2\int\limits^2_(-1) {} \, dx + \int\limits^2_(-1) {x} \, dx - \int\limits^2_(-1) x^2} \, dx
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = 2(x) \bigg| \limits^2_(-1) + (x^2)/(2) \bigg| \limits^2_(-1) - (x^3)/(3) \bigg| \limits^2_(-1)
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle A = 2(3) + (3)/(2) - 3
  6. Simplify:
    \displaystyle A = (9)/(2)
  7. Reduce:
    \displaystyle A = 4(1)/(2)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

HELP WITH CALCULUS Find the area bounded by the curve y = x^2 and the straight line-example-1
answered
User Jonathan Voss
by
8.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.