Answer:
A. 4 1/2
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Functions
- Function Notation
- Graphing
Solving systems of equations by graphing
Calculus
Integration
- Integrals
- Definite Integrals
- Integration Constant C
- Area under the curve
Integration Rule [Reverse Power Rule]:

Integration Rule [Fundamental Theorem of Calculus 1]:

Integration Property [Multiplied Constant]:

Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2019/formulas/mathematics/college/2wdbz1krm7xrlw21cff2iqj2n4yank84kd.png)
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2019/formulas/mathematics/college/zsx87s9r98wfev7grj88nocqihswx53n7i.png)
Explanation:
Step 1: Define
y = x²
y = 2 + x
Step 2: Identify
See Attachment. Find other necessary information.
Interval [-1, 2]
Step 3: Find Area
- Substitute in variables [Area of a Region Formula]:

- [Integral] Rewrite [Integration Property - Addition/Subtraction]:

- [1st Integral] Rewrite [Integration Property - Multiplied Constant]:

- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

- Simplify:

- Reduce:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e