asked 61.9k views
0 votes
The area of this rectangle is given by the quadratic function

A = 50W - W2.

What is the reasonable domain for this function?
A) 0 < x < 50
B) 0 < x < 100
C) 0 < x < ∞
D) −∞ < x < ∞

asked
User Fuglede
by
8.2k points

2 Answers

2 votes

Answer:A

Step-by-step explanation:I did and I got it correct

answered
User Mjollneer
by
8.0k points
1 vote

The function uses W as the variable but the options show only x's as the variable, so I'm asumming W in the answer

Answer:

0 < W < 50

Correct option: A

Explanation:

Domain of functions

Some functions have restricted values of the independent variable x. It can be due to mathematical restrictions, like dividing by 0 or taking the square root of a negative number, of it can be due to practical conditions of the situation being modeled.

In this case, the area of a rectangle is given by the quadratic function.


A=50W - W^2

Since the area of a rectangle cannot be negative (and should be positive, though it could be zero), the practical domain of A is determined when


50W - W^2\geq 0

Taking common factor W


W(50 - W)\geq 0

Since W must be positive W>0


50 - W\geq 0

Or equivalently


50 \geq W


W \leq 50

The total interval is


0 < W<50

Correct option: A

Please note: The real restriction should be


0 < W\leq 50

if we allowed the area to be positive, but I'm providing the most possible correct available option

answered
User Psmith
by
8.3k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.