asked 95.7k views
2 votes
Find the surface area of the right cylinder which has a diameter of 16 and height of 4

2 Answers

2 votes

Answer:

603.16

Explanation:

Notice that the surface of a right cylinder can be formed by a rectangle that is rolled to conform a tube, and two circles (one for the top and one for the bottom). So in order to estimate its surface we need to add these.

Recall that the area of a circle of radius "r" is:
\pi\,* r^2, therefore considering that the diameter of the cylinder is 16, its radius must be 8, and this formula gives:


\pi*8^2=201.06

Now for the rectangle: the base of it is equal to the actual length of the circumference of its base, so the length of its base is:
\pi*diameter=\pi*16=50.26

and the rectangle's height is: 4

Then the rectangle's area is: 4 * 50.26 = 201.04

So now we add the two circles plus the rectangle and get:

2* 201.06 + 201.04 = 603.16

answered
User Victor Marchuk
by
8.5k points
3 votes

Answer:

The surface area of the right cylinder is 602.88 units.

Explanation:

To find the surface area of right cylinder we will use the formula:

A = 2π×r×h + 2πr^2

We find the 'r' by dividing the diameter with 2

A = (2×(3.14)×8×4) + 2×(3.14)×8^2

A = 200.96 + 401.92

A = 602.88 units.

answered
User Robert Apikyan
by
7.8k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.