asked 193k views
23 votes
Drag each expression to the correct location on the model. Not all will be used

Drag each expression to the correct location on the model. Not all will be used-example-1

1 Answer

5 votes

Answer:
\frac{x^(2)+2x+1 }{\mathbf {x-1}} \cdot \frac{\mathbf {5x^(2) +15x-20} }{7x^(2) +7x}

Explanation:


((5x^(2) +25x+20)/(7x) )/((x^(2) +2x+1)/(7x^(2) +7x) ) =(5x^(2) +25x+20)/(7x) * (7x^(2) +7x)/(x^(2) +2x+1)=(5x^(2) +25x+20)/(7x) * (7x(x +1))/((x+1)^(2) )=\\\\=(5x^(2) +25x+20)/(x+1) =\frac{{5(x+1)(x+4)}}{x+1}=5(x+4)


5(x+4)=(5(x-1) \cdot (x+4))/(x-1)=(5x^(2) +15x-20)/(x-1)

Thus, the expressions will be used: (5x² + 15x - 20) and (x + 4).

Let's check:


\frac{x^(2)+2x+1 }{\mathbf {x-1}} \cdot \frac{\mathbf {5x^(2) +15x-20} }{7x^(2) +7x} =((x+1)^(2) )/(x-1) \cdot (5(x-1) \cdot (x+4))/(7x(x+1)) =\\\\=((x+1) \cdot 5 \cdot (x+4))/(7x) =(5x^(2) +25x+20)/(7x)

answered
User Mdarwin
by
7.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.