asked 87.1k views
2 votes
Please help me with this math problem!! I've tried so many times!!! :(​

Please help me with this math problem!! I've tried so many times!!! :(​-example-1
asked
User Ahorn
by
8.4k points

1 Answer

4 votes

Answer:

So the answer is DNC(Does Not Convergence)

Explanation:

Given;


\int\limits^\infty_5 {(7)/(x^(2)-9 ) } \ dx

We know,

The integral is an improper integral because the upper limit of integration approaches infinity. First, replace the infinite upper limit by the finite limit 'l' and take the limit of 'l' to approach infinity.


\int\limits^\infty_5 {(7)/(x^(2)-9 ) } \, dx=7 \lim_(l \to \infty)  \int\limits^\infty_5 {(1)/(x^(2)-9 ) } \, dx


7 \lim_(l \to \infty)  \int\limits^\infty_5 {(1)/(x^(2)-3^(2)  ) } \, dx


7*  \lim_(l \to \infty) \left [ (1)/(2* 3) \log\left |(x-3)/(x+3)   \right | \right ]_(5)^(l)
(∵We know;
\int {(1)/(x^(2)-a^(2)  ) } \, dx=  (1)/(2* a) \log\left |(x-3)/(x+3)   \right |
)


(7)/(6) * \lim_(l \to \infty) \left[ \log\left | (l-3)/(l+3) \right |-\log\left | (5-3)/(5+3)\right |\right]


(7)/(6) * \lim_(l \to \infty) \left[ \log\left | (l-3)/(l+3) \right |-\log\left | (-2)/(8)\right |\right]


(7)/(6) * \left[ \log\left | (\infty-3)/(\infty+3) \right |-\log( (2)/(8))\right]
(∵
\left | -(2)/(8)  \right |=((2)/(8) )
)


(7)/(6) * \left[ \infty-\log( (2)/(8))\right]


(7)/(6)* \infty


\infty

Thus the integral Does Not Convergence.

answered
User Hubert Perron
by
8.7k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.