asked 212k views
0 votes
100 points, please help!

Suppose P is a monic quartic polynomial (i.e. a 4th-degree polynomial with leading coefficient 1) such that P(1)=1, P(2)=4, P(3)=9, P(4)=16. Find P(5).

2 Answers

0 votes

Answer:

P(5) = 49

Explanation:

A graphing calculator shows the quartic function that matches the given points is ...

P(x) = x^4 -10x^3 +36x^2 -50x +24

___

Evaluating for x=5, we have ...

P(5) = (((5 -10)5 +36)5 -50)5 +24 = ((-25+36)5 -50)5 +24 = (55 -50)5 +24

P(5) = 49

answered
User Fokwa Best
by
8.2k points
6 votes

Answer:

P(5) = 49

Explanation:

A graphing calculator shows the quartic function that matches the given points is ...

P(x) = x^4 -10x^3 +36x^2 -50x +24

___

Evaluating for x=5, we have ...

P(5) = (((5 -10)5 +36)5 -50)5 +24 = ((-25+36)5 -50)5 +24 = (55 -50)5 +24

P(5) = 49

100 points, please help! Suppose P is a monic quartic polynomial (i.e. a 4th-degree-example-1
answered
User Stedman Blake
by
9.1k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.