Answer with Step-by-step explanation:
Given

Differentiating both sides by 'x' we get

Now we know that for an increasing function we have
![f'(x)>0\\\\14cos(2x)+7cos(x)>0\\\\2cos(2x)+cos(x)>0\\\\2(2cos^(2)(x)-1)+cos(x)>0\\\\4cos^(2)(x)+cos(x)-2>0\\\\(2cos(x)+(1)/(2))^2-2-(1)/(4)>0\\\\(2cos(x)+(1)/(2))^2>(9)/(4)\\\\2cos(x)>(3)/(2)-(1)/(2)\\\\\therefore cos(x)>(1)/(4)\\\\\therefore x=[0,cos^(-1)(1/4)]\cup [2\pi-cos^(-1)(1/4),2\pi ]](https://img.qammunity.org/2020/formulas/mathematics/college/te50veqcaw9czun0hst8lsb9cgibii418z.png)
Similarly for decreasing function we have
![[tex]f'(x)<0\\\\\therefore cos(x)<1/4\\\\x<cos^(-1)((1)/(4))\\\\x=[cos^(-1)((1)/(4)),2\pi -cos^(-1)((1)/(4))]](https://img.qammunity.org/2020/formulas/mathematics/college/fndr7q3nwr8rbaxgu0ehd8mt89qgx1z3us.png)
Part b)
To find the extreme points we equate the derivative with 0

Thus point of extrema is only 1.