Answer:
x = 4
y = 1
z= -3
Explanation:
Given equations are
-2x + 3y - 4z = 7
5x - y + 2z = 13
3x + 2y - z = 17
We can write the above equations in matrix augmented form as
![\left[\begin{array}{ccc}-2&3&-4:7\\5&-1&2:13\\3&2&-1:17\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/e9mxt1v4xo02eys546jiafzn0nz8t6k1kt.png)

![=\ \left[\begin{array}{ccc}1&(-3)/(2)&2:(-7)/(2)\\5&-1&2:13\\3&2&-1:17\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/lqw2ug22roye5wdkqx0836z04vygaightc.png)

![=\ \left[\begin{array}{ccc}1&(-3)/(2)&2:(-7)/(2)\\0&-1+(15)/(2)&-8:13+(35)/(2)\\0&0&-7:17+(21)/(2)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/ttwz1421xfwzz38ac6dsr038g1omxchbh1.png)
![=\ \left[\begin{array}{ccc}1&(-3)/(2)&2:(-7)/(2)\\\\0&(13)/(2)&-8:(61)/(2)\\\\0&(13)/(2)&-7:(55)/(2)+(21)/(2)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/epmdrguwizfvxn8ninbjjej01u2egqrkqc.png)

![=\ \left[\begin{array}{ccc}1&(-3)/(2)&2:(-7)/(2)\\\\0&1&(-16)/(13):(61)/(13)\\\\0&(13)/(2)&-7:(55)/(2)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/h8pju4h0ufrgth2b23ak6e6xmrxonxntki.png)

![=\ \left[\begin{array}{ccc}1&(-3)/(2)&2:(-7)/(2)\\\\0&1&(-16)/(13):(61)/(13)\\\\0&0&1:-3\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/college/29ah1abtfo53alslzsmz8fph4pu9gqyp9e.png)
So, from the above augmented matrix, we can write


z= -3.....(3)
From eq(2) and (3)

=> y = 1
Now, by putting the value of y and z in equation (1), we will get

=> x = 4
Hence, the value of
x = 4
y = 1
z= -3