asked 7.8k views
4 votes
If the largest angle of a triangle is 120° and it is included between sides of 1.5 and 0.5, then (to the nearest tenth) the largest side of the triangle is

a0.

asked
User Mahdyfo
by
7.3k points

1 Answer

4 votes

Answer:

1.8 units.

Explanation:

The questions which involve calculating the angles and the sides of a triangle either require the sine rule or the cosine rule. In this question, the two sides that are given are adjacent to each other and the given angle is the included angle. This means that the angle is formed by the intersection of the two lines. Therefore, cosine rule will be used to calculate the length of the largest side of the triangle. The cosine rule is:

b^2 = a^2 + c^2 - 2*a*c*cos(B).

The question specifies that a=0.5, B=120°, and c=1.5. Plugging in the values:

b^2 = 0.5^2 + 1.5^2 - 2(0.5)(1.5)*cos(120°).

Simplifying gives:

b^2 = 3.25.

Taking square root on the both sides gives b = 1.8 (rounded to the nearest tenth).

This means that the length of the third side is 1.8 units!!!

answered
User Garry Law
by
8.3k points

Related questions

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.