asked 128k views
2 votes
How to solve this indefinite integral? ​

How to solve this indefinite integral? ​-example-1
asked
User Sema
by
7.8k points

1 Answer

5 votes


\displaystyle\int(3x)/(\cos^2(2x^2))\,\mathrm dx

Substitute
y=2x^2, so that
\mathrm dy=4x\,\mathrm dx:


\displaystyle\int(3x)/(\cos^2(2x^2))\,\mathrm dx=\frac34\int(4x)/(\cos^2(2x^2))\,\mathrm dx=\frac34\int(\mathrm dy)/(\cos^2y)

Then


\frac1{\cos^2y}=\sec^2y=(\mathrm d)/(\mathrm dy)[\tan y]

so that the integral wrt
y comes out to be


\displaystyle\frac34\int\sec^2y\,\mathrm dy=\frac34\tan y+C

Replace
y to solve for the integral wrt
x:


\displaystyle\int(3x)/(\cos^2(2x^2))\,\mathrm dx=\boxed{\frac34\tan(2x^2)+C}

answered
User Uris
by
7.8k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.