asked 190k views
3 votes
Drag the tiles to the boxes to form correct pairs. Not all tiles will be used.

Match the function with its inverse.


File ATTACHED
THANK YOU

Drag the tiles to the boxes to form correct pairs. Not all tiles will be used. Match-example-1

2 Answers

1 vote

Answer:

Explanation:

Drag the tiles to the boxes to form correct pairs. Not all tiles will be used. Match-example-1
answered
User Zunino
by
8.4k points
4 votes

Answer:

Part 1)
f(x)=(2x-1)/(x+2) ------->
f^(-1)(x)=(-2x-1)/(x-2)

Part 2)
f(x)=(x-1)/(2x+1) ------->
f^(-1)(x)=(-x-1)/(2x-1)

Part 3)
f(x)=(2x+1)/(2x-1) ----->
f^(-1)(x)=(x+1)/(2(x-1))

Part 4)
f(x)=(x+2)/(-2x+1) ---->
f^(-1)(x)=(x-2)/(2x+1)

Part 5)
f(x)=(x+2)/(x-1) ------->
f^(-1)(x)=(x+2)/(x-1)

Explanation:

Part 1) we have


f(x)=(2x-1)/(x+2)

Find the inverse

Let

y=f(x)


y=(2x-1)/(x+2)

Exchange the variables x for y and t for x


x=(2y-1)/(y+2)

Isolate the variable y


x=(2y-1)/(y+2)\\ \\ xy+2x=2y-1\\ \\xy-2y=-2x-1\\ \\y[x-2]=-2x-1\\ \\y=(-2x-1)/(x-2)

Let


f^(-1)(x)=y


f^(-1)(x)=(-2x-1)/(x-2)

Part 2) we have


f(x)=(x-1)/(2x+1)

Find the inverse

Let

y=f(x)


y=(x-1)/(2x+1)

Exchange the variables x for y and t for x


x=(y-1)/(2y+1)

Isolate the variable y


x=(y-1)/(2y+1)\\ \\2xy+x=y-1\\ \\2xy-y=-x-1\\ \\y[2x-1]=-x-1\\ \\y=(-x-1)/(2x-1)

Let


f^(-1)(x)=y


f^(-1)(x)=(-x-1)/(2x-1)

Part 3) we have


f(x)=(2x+1)/(2x-1)

Find the inverse

Let

y=f(x)


y=(2x+1)/(2x-1)

Exchange the variables x for y and t for x


x=(2y+1)/(2y-1)

Isolate the variable y


x=(2y+1)/(2y-1)\\ \\2xy-x=2y+1\\ \\2xy-2y=x+1\\ \\y[2x-2]=x+1\\ \\y=(x+1)/(2(x-1))

Let


f^(-1)(x)=y


f^(-1)(x)=(x+1)/(2(x-1))

Part 4) we have


f(x)=(x+2)/(-2x+1)

Find the inverse

Let

y=f(x)


y=(x+2)/(-2x+1)

Exchange the variables x for y and t for x


x=(y+2)/(-2y+1)

Isolate the variable y


x=(y+2)/(-2y+1)\\ \\-2xy+x=y+2\\ \\-2xy-y=-x+2\\ \\y[-2x-1]=-x+2\\ \\y=(-x+2)/(-2x-1) \\ \\y=(x-2)/(2x+1)

Let


f^(-1)(x)=y


f^(-1)(x)=(x-2)/(2x+1)

Part 5) we have


f(x)=(x+2)/(x-1)

Find the inverse

Let

y=f(x)


y=(x+2)/(x-1)

Exchange the variables x for y and t for x


x=(y+2)/(y-1)

Isolate the variable y


x=(y+2)/(y-1)\\ \\xy-x=y+2\\ \\xy-y=x+2\\ \\y[x-1]=x+2\\ \\y=(x+2)/(x-1)

Let


f^(-1)(x)=y


f^(-1)(x)=(x+2)/(x-1)

answered
User MDMalik
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.