Answer:
a. False
b. True
c. False
d. True
e. False
f. True
Explanation:
By properties of logarithms:
a. False: ㏒ₐb-㏒ₐc ≠ (㏒ₐb / ㏒ₐc) does not exists that property
b. True: (㏒ₐb)-(㏒ₐc) = ㏒ₐ(b/c) Logarithm of a Quotient
c. False: Does not exists the property: ㏒ₐ(c+b) = ㏒ₐc + ㏒ₐb
so
㏒₄(5x+16) ≠ ㏒₄5x + ㏒₄16 but, ㏒₄16 + ㏒₄5x = 2 + ㏒₄5x
because ㏒₄16 = 2.
d. True: Logarithm of a Product: ㏒ₐ(c×b) = ㏒ₐc + ㏒ₐb
so
㏒₄(16×5x) = ㏒₄16 + ㏒₄5x = 2 + ㏒₄5x
e. False: Logarithm of a Power: ㏒ₐ(c×b)ⁿ = n ㏒ₐ(c×b) = n (㏒ₐc + ㏒ₐb) = n ㏒ₐc + n ㏒ₐb
so
㏒ₐ(3x)² ≠ 2 ㏒ₐ3 + ㏒ₐx
f. Correct use of property in point e.