asked 198k views
2 votes
Please help and look at the picture

Please help and look at the picture-example-1
asked
User Digdog
by
8.2k points

1 Answer

3 votes

ANSWER

A.


(1)/(64)

Step-by-step explanation

The given expression is:


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) }

Recall that:


{a}^(m) / {a}^(n) = {a}^(m - n)

We apply this property to obtain:


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) } = {4}^{ - (11)/(3) - - (2)/(3) }

Collect LCM


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) } = {4}^{ ( - 11 + 3)/(3)}

Simplify;


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) } = {4}^{ ( - 9)/(3)}

.


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) } = {4}^( - 3)


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) } = \frac{1}{ {4}^(3) }


{4}^{ - (11)/(3) } / {4}^{ - (2)/(3) } = (1)/(64)

The first choice is correct

answered
User Won Chul Jo
by
7.6k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.