asked 167k views
1 vote
How to solve logarithmic equations as such

How to solve logarithmic equations as such-example-1
asked
User Aaronc
by
8.3k points

1 Answer

7 votes


\bf \textit{exponential form of a logarithm} \\\\ \log_a b=y \implies a^y= b\qquad\qquad a^y= b\implies \log_a b=y \\\\\\ \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} ~\hspace{7em} \begin{array}{llll} \textit{Logarithm Cancellation Rules} \\\\ log_a a^x = x\qquad \qquad \stackrel{\textit{we'll use this one}}{a^(log_a x)=x} \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}


\bf \log_2(x-1)=\log_8(x^3-2x^2-2x+5) \\\\\\ \log_2(x-1)=\log_(2^3)(x^3-2x^2-2x+5) \\\\\\ \log_(2^3)(x^3-2x^2-2x+5)=\log_2(x-1) \\\\\\ \stackrel{\textit{writing this in exponential notation}}{(2^3)^(\log_2(x-1))=x^3-2x^2-2x+5}\implies (2)^(3\log_2(x-1))=x^3-2x^2-2x+5


\bf (2)^(\log_2[(x-1)^3])=x^3-2x^2-2x+5\implies \stackrel{\textit{using the cancellation rule}}{(x-1)^3=x^3-2x^2-2x+5} \\\\\\ \stackrel{\textit{expanding the left-side}}{x^3-3x^2+3x-1}=x^3-2x^2-2x+5\implies 0=x^2-5x+6 \\\\\\ 0=(x-3)(x-2)\implies x= \begin{cases} 3\\ 2 \end{cases}

answered
User Idancali
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.