asked 216k views
0 votes
Which choice is equivalent to the quotient below when. The problem is in the photo below.please

Which choice is equivalent to the quotient below when. The problem is in the photo-example-1

2 Answers

1 vote

Answer:

D is the answer

Explanation:


\begin{array} { c } { \sqrt { 9 - x ^ { 2 } } / \sqrt { x + 3 } \text { means the same as } \frac { \sqrt { 9 - x ^ { 2 } } } { \sqrt { x + 3 } } } \\ { \text { since it is a multiple choice question, plug in values until the right one works.} } \end{array}


\frac { \sqrt { 9 - x ^ { 2 } } } { \sqrt { x + 3 } } \text { where } - 3 < x \leq 3


x = - 2 : &nbsp;\frac { \sqrt { 9 - ( - 2 ) ^ { 2 } } } { \sqrt { ( - 2 ) + 3 } } = \frac { \sqrt { 9 - 4 } } { \sqrt { 1 } } = \frac { \sqrt { 5 } } { 1 } = \sqrt { 5 }\\

This does not equal a choice


\begin{aligned} \text { Where } x = &amp; - 1 : \frac { \sqrt { 9 - ( - 1 ) ^ { 2 } } } { \sqrt { ( - 1 ) + 3 } } = \frac { \sqrt { 9 - 1 } } { \sqrt { 2 } } = \frac { \sqrt { 8 } } { \sqrt { 2 } } = 2 \\ &amp; \text { This does not equal a choice } \end{aligned}


\begin{aligned} \text { Where } x = &amp; 0 : \frac { \sqrt { 9 - ( 0 ) ^ { 2 } } } { \sqrt { 9 - ( 0 ) + 3 } } = \frac { \sqrt { 9 - 0 } } { \sqrt { 3 } } = \frac { \sqrt { 9 } } { \sqrt { 3 } } = \sqrt { 3 } \\ &amp; \text { This does not equal a choice } \end{aligned}


\begin{aligned} \text { Where } x = &amp; 1 : \frac { \sqrt { 9 - ( 1 ) ^ { 2 } } } { \sqrt { ( 1 ) + 3 } } = \frac { \sqrt { 9 - 1 } } { \sqrt { 4 } } = \frac { \sqrt { 8 } } { 2 } = \sqrt { 2 } \\ &amp; \text { This does not equal a choice } \end{aligned}


\begin{array} { c } { \text { Where } x = 2 : \frac { \sqrt { 9 - ( 2 ) ^ { 2 } } } { \sqrt { ( 2 ) + 3 } } = \frac { \sqrt { 9 - 4 } } { \sqrt { 5 } } = \frac { \sqrt { 5 } } { \sqrt { 5 } } = 1 } \\ { \text { Therefor, option } \mathrm { D } \text { is the answer } } \end{array}

Which choice is equivalent to the quotient below when. The problem is in the photo-example-1
answered
User Chillers
by
8.5k points
5 votes

Answer:

The answer is C √3 - x

answered
User Vsingh
by
8.5k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.