Answer:
1. y^2 - y - 2 = (y + 1)(y - 2)
2. 3y^2 - 27 = 3(y - 3)(y + 3)
3. y^4 - 16 = (y - 2)(y + 2)(y^2 + 4)
4. y^2 - 12y + 36 = (y - 6)^2
5. -4y^2 + 8y + 32 = -4(y + 2)( y - 4)
6. 5y - 2 + 4y^2 - 4 = (4y - 3)(y + 2)
Explanation:
1. y^2 - y - 2=(y - 2)(y + 1)→
y^2 - y - 2 = (y + 1)(y - 2)
2. 3y^2 - 27
Common factor 3:

Using Difference of squares:

with:


3y^2 - 27=3(y - 3)(y + 3)
3. y^4 - 16
Using Difference of squares:

with:


y^4 - 16 = (y^2-4)(y^2+4)
Using Difference of squares in the first parentheses:

with:


y^4 - 16 = (y - 2)(y + 2)(y^2 + 4)
4. y^2 - 12y + 36 = (y - 6)(y - 6)
y^2 - 12y + 36 = (y - 6)^2
5. -4y^2 + 8y + 32
Common factor -4:

-4y^2 - 12y + 32 = -4(y + 2)( y - 4)
6. 5y - 2 + 4y^2 - 4
Adding like terms:
5y - 2 + 4y^2 - 4 = 5y + 4y^2 - 6
Ordering the terms:
5y - 2 + 4y^2 - 4 = 4y^2 + 5y - 6
Writing 5y like: 8y - 3y = -3y + 8y
5y - 2 + 4y^2 - 4 = 4y^2 - 3y + 8y - 6
Grouping terms:
5y - 2 + 4y^2 - 4 = (4y^2 - 3y) + (8y - 6)
Common factor in the first parentheses y and 2 in the second parentheses:
5y - 2 + 4y^2 - 4 = y(4y - 3) + 2(4y - 3)
Common factor 4y-3:
5y - 2 + 4y^2 - 4 = (4y - 3)(y + 2)