asked 192k views
2 votes
Sin x+cos x= cos x/1-tanx+sinx/1-cotx verify the identity with steps!!!!

1 Answer

6 votes

Answer:

Identity is verified.

Explanation:

The given equation is
sinx+cosx= (cosx)/(1-tanx)+(sinx)/(1-cotx)

Now to prove this identity we will either convert left hand side of the equation into the right hand side of the equation or the reverse of it.

Now we take right hand side of the identity \frac{cosx}{1-tanx}+\frac{sinx}{1-cotx} and simply solve it.


(cosx)/(1-tanx)+(sinx)/(1-cotx)=(cosx)/(1-(sinx)/(cosx)) + (cosx)/(1-(cosx)/(sinx))


=(cosx)/((cosx-sinx)/(cosx))+(sinx)/((cosx-sinx)/(sinx))


=(cos^(2)x)/(cosx-sinx)+(sin^(2)x)/(sinx-cosx)


=(cos^(2)x)/(cosx-sinx)-(sin^(2)x)/(cosx-sinx)


=(cos^(2)x-sin^(2)x)/(cosx-sinx)

From the formula (a²-b²)=(a+b)(a-b)


=((cosx+sinx)(cosx-sinx))/(cosx-sinx)

Now we cancel the common terms from numerator and denominator.


=cosx+sinx which equal to the left hand side of the equation.

Therefore identity is verified.



answered
User Srivatsan
by
7.6k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.