asked 110k views
5 votes
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Using the properties of integer exponents, match each expression with its equivalent expression.

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used-example-1
asked
User ScottJ
by
8.6k points

2 Answers

1 vote

Answer:

5-3 -----> 1/125

-5-3 ------> -1/125

(-5-3)-1 -------> -125

(-5-3)0 --------> 1

Explanation:

The other person is correct but i simplified it a little bit.

answered
User SerialEnabler
by
7.3k points
2 votes

Answer:

(a)


5^(-3)=(1)/(125)

(b)


-5^(-3)=-(1)/(125)

(c)


(-5^(-3))^(-1)=-125

(d)


(-5^(-3))^(0)=1

Explanation:

(a)


5^(-3)

we can use property of exponent


a^(-n)=(1)/(a^n)

we get


5^(-3)=(1)/(5^3)


5^(-3)=(1)/(5* 5* 5)


5^(-3)=(1)/(125)........Answer

(b)


-5^(-3)

we can use property of exponent


a^(-n)=(1)/(a^n)

we get


-5^(-3)=-(1)/(5^3)


-5^(-3)=-(1)/(5* 5* 5)


-5^(-3)=-(1)/(125)........Answer

(c)


(-5^(-3))^(-1)

we can use property of exponent


(a^(n))^m=a^(m* n)

we get


(-5^(-3))^(-1)=(-5)^(-3* -1)


(-5^(-3))^(-1)=(-5)^3


(-5^(-3))^(-1)=(-5)* (-5)* (-5)


(-5^(-3))^(-1)=-125........Answer

(d)


(-5^(-3))^(0)

we can use property of exponent


(a^(n))^m=a^(m* n)

we get


(-5^(-3))^(0)=(-5)^(-3* 0)


(-5^(-3))^(-1)=(-5)^0

we can use property


a^0=1


(-5^(-3))^(0)=1........Answer

answered
User Paul English
by
8.4k points

No related questions found

Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.