asked 172k views
3 votes
Trouvez la différentielle de la fonction y=x3⋅sinx

1 Answer

4 votes

Answer:

The answer is "
y'= x^2( x \cos x + 3 \sin x)"

Explanation:

Given:


\to y= x^3 \cdot \sin x\\\\

Formula:


\to (d)/(dx) (a b) = a (db)/(dx)+b (da)/(dx)


\to (d)/(dx) x^n = nx^(n-1)\\\\\to (d)/(dx) \sin x = \cos x\\

Differentiate the given value:


\to y= x^3 \cdot \sin x\\\\ \to y' = x^3 (d)/(dx) (\sin x) + \sin x (d)/(dx) (x^3)\\\\ \to y'= x^3 \cos x + \sin x \cdot 3x^2\\\\\to y'= x^2( x \cos x + 3 \sin x) \\\\

answered
User PemaGrg
by
8.0k points
Welcome to Qamnty — a place to ask, share, and grow together. Join our community and get real answers from real people.