Answer: 
 
29.5+/-1.11 
 
= ( 28.39, 30.61) 
 
Therefore, the 90% confidence interval (a,b) =( 28.39, 30.61) 
 
Step-by-step explanation: 
 
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it. 
 
The confidence interval of a statistical data can be written as. 
 
x+/-zr/√n 
 
Given that; 
 
Mean x = 29.5 
 
Standard deviation r = 5.2 
 
Number of samples n = 59 
 
Confidence interval = 90% 
 
z-value (at 90% confidence) = 1.645 
 
Substituting the values we have; 
 
29.5+/-1.645(5.2/√59) 
 
29.5+/-1.645(0.676982337100) 
 
29.5+/-1.113635944529 
 
29.5+/-1.11 
 
= ( 28.39, 30.61) 
 
Therefore, the 90% confidence interval (a,b) =( 28.39, 30.61)